If it's not what You are looking for type in the equation solver your own equation and let us solve it.
78=y^2+5y
We move all terms to the left:
78-(y^2+5y)=0
We get rid of parentheses
-y^2-5y+78=0
We add all the numbers together, and all the variables
-1y^2-5y+78=0
a = -1; b = -5; c = +78;
Δ = b2-4ac
Δ = -52-4·(-1)·78
Δ = 337
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{337}}{2*-1}=\frac{5-\sqrt{337}}{-2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{337}}{2*-1}=\frac{5+\sqrt{337}}{-2} $
| (a-3)/5=-6 | | 180=(2x+10)+(x+5) | | .25(n+2)=2.5 | | 360=x+x-20 | | 5x-2=+9 | | 5g+1=2g+7 | | 88=2x+12 | | 2x+2x+30+x=360 | | 90=x+(0.4x | | -6(1-8k)=330 | | -8(x−7)=8+2(4−8x) | | 90=x+(x0.4) | | Y+t=3 | | 10x–6=-2x+4 | | X=3x+2=2x+4 | | n+6=(17-12)×4 | | 0=16t^2+72t+3 | | 2-14=3a+16 | | a-14=3a=16 | | (7x+5)+(6x+20)=180 | | -14+5x=-44+2x | | 1/6-5w/4=-4 | | 4a-8=2a+14 | | 4w−4=16 | | 5/3x+3/5=1/9 | | 11=2x+(3x+1) | | y/5+y/3=16 | | 32x-3=20 | | b2− 1=2 | | 4=x+42/9 | | 3x+20+5x+20+2x+40=360 | | -8x+8(1-5x)=-376 |